Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema Öztürk Yıldırım, ${ }^{\mathbf{a} *}$ Arif Baran, ${ }^{\text {b }}$ Hasan Seccen $^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey, and ${ }^{\text {c Department of Physics, }}$ Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.084$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(2-exo,7-exo,9-endo,10-endo)-11-Oxatricyclo[6.2.1.0 ${ }^{2,7}$] undec-4-ene-9,10-diyl diacetate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$, shows a non-planar geometry.

Comment

The reaction of furan (1) and vinylene carbonate (2) to give cycloadducts ($3 a$) and ($4 a$) has been well known for about 50 years (Newman \& Addor, 1955). Cycloadducts (3a) and (4a) can be readily converted to the corresponding diols ($3 b$) and (4b) and acetate derivatives (3c) and (4c) with no change of the stereochemistry of oxygen functionalities.

Cycloadducts (3) and (4) have been used for many synthetic purposes. Cycloadducts ($3 a$) and ($4 a$) were used for the preparation of conduritol-C (Yur'ev \& Zefirov, 1961), for the stereoselective synthesis of inositols (Kowarski \& Sarel, 1973), for the preparation of ribose derivatives (Schmidt \& Lieberknecht, 1978) and for the synthesis of muscarone analogs (De Micheli et al., 1993). Cycloadducts (3b) and (4b) were used for the preparation of 7-oxabicyclo[2.2.1]hepta-2,5-diene, which is benzene-1,4-epoxide (Prinzbach et al., 1986). endo-Diacetate (3c) was reported to be a ROMP (ring-opening metathesis polymerization) polymerizable material.

In our recent studies, we used diacetates (3c) and (4c) for stereoselective preparation of haloconduritols (Baran et al., 2003, 2004). We also reported the formation of two dichloroconduritols from the reaction of diol ($3 b$) with BCl_{3} (Öztürk et

Received 14 January 2005 Accepted 16 February 2005 Online 26 February 2005

(4a)
(4c) $R=A c$

Figure 1
ORTEP-3 view (Farrugia, 1997) of (6), showing the atom-numbering scheme and 20% probability displacement ellipsoids

Figure 2
The unit-cell contents of (6).
al., 2004; Akkurt et al., 2004). In this paper, we report the Diels-Alder reaction of endo-diacetate ($3 c$) and exo-diacetate (4c) with butadiene. endo-Diacetate (3c) was reacted with 3sulfolene (5), a protected 1,3-butadiene, to give the title compound, (6), in a high yield (90%) and as the sole product.

Compound (6) showed seven signals in its ${ }^{13} \mathrm{C}$ NMR spectrum. If one considers that Diels-Alder reactions proceed in a stereospecific manner, compound (6) should have mirror
symmetry. However, butadiene may approach (3c) and (4c) from the endo-face or the exo-face. Therefore, the stereochemistry of H atoms at C 3 and C8 is unknown; accordingly, an X-ray crystallographic analysis was undertaken.

We have shown that 7-oxabicyclo[2.2.1]hept-5-enediyl diacetates (3c) and (4c) prefer the exo-face in the Diels-Alder cycloaddition with butadiene. The conformation of (6), together with the atom-numbering scheme, is shown in Fig. 1. The two tetrahydrofuran junctions link a non-planar cyclohexene ring. Molecule (6) has the E configuration at the central C3C 8 bond. The mean $\mathrm{C}-\mathrm{O} 1$ distance is 1.449 (1) \AA, with a bent $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$ angle of 96.44 (7) ${ }^{\circ}$. The two tetrahydrofuran rings each have an envelope conformation [the ring puckering parameters (Cremer \& Pople, 1975) are $\mathrm{Q}(2)=0.590$ (1) \AA and $\varphi(2)=175.63(11)^{\circ}$ for the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 9 / \mathrm{C} 10$ ring, and $\mathrm{Q}(2)=0.545(1) \AA$ and $\varphi(2)=1.89(11)^{\circ}$ for the $\mathrm{C} 3 / \mathrm{C} 2 / \mathrm{O} 1 / \mathrm{C} 9 /$ C 8 ring]. The torsion angles $\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 13$ and $\mathrm{C} 2-$ $\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$ are 170.77 (8) and $-94.10(10)^{\circ}$, respectively.

We have carried out $C N D O$ (complete neglect of differential overlap) quantum mechanical calculations (Allinger et al., 1989) on (6), using their experimental atomic coordinates from the X-ray structure determination, and the charge distribution on the molecule in the gas phase was calculated (C4 0.45, C7 0.33, C11 0.43, C13 0.51, O1-0.48, O2-0.26, O3 $-0.36, \mathrm{O} 4-0.32$ and $\mathrm{O} 5-0.28 \mathrm{e}^{-}$). The dipole moment of (6) is 6.96 D . The highest occupied and lowest unoccupied molecular orbital energy levels are -5.84 and 1.08 eV .

Experimental

(2-endo,3-endo)-7-Oxabicyclo[2.2.1]hept-5-ene-2,3-diyl diacetate, (3c) $(1060 \mathrm{mg}, 5 \mathrm{mmol})$, dissolved in 1,2-dichloroethane $(5 \mathrm{ml})$, and 3sulfolene $(1500 \mathrm{mg}, 12.7 \mathrm{mmol})$ were added to a pressure tube. The top of the tube was tightly closed and the tube was heated at 403408 K for 24 h . After cooling the pressure tube, the reaction mixture was added to a flask. Removal of the solvent and unreacted 1,3butadiene and SO_{2} gave cycloadduct (6) $(1200 \mathrm{mg}, 90 \%)$ as colorless crystals (m.p. 362-363 K, from 1,2-dichloroethane). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.85-5.82(m, 2 \mathrm{H}), 4.83-4.80(m, 2 \mathrm{H}), 4.26-4.23$ $(m, 2 \mathrm{H}), 2.33-1.75(m, 6 \mathrm{H}), 1.99(s, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 169.6,128.5,83.4,68.7,36.8,25.8,20.4$. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$: C 63.15, H 6,81\%; found: C 63.23, H 6.69\%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$
$M_{r}=266.28$
Monoclinic, $P 2_{d} / c$
$a=5.8430(3) \AA$
$b=12.8501(8) \AA$
$c=17.5767(11) \AA$
$\beta=97.449(5)^{\circ}$
$V=1308.58(13) \AA^{\circ}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.944, T_{\text {max }}=0.973$
18334 measured reflections

$$
D_{x}=1.352 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 2988
reflections
$\theta=1.6-27.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colorless
$0.57 \times 0.40 \times 0.27 \mathrm{~mm}$

> 2988 independent reflections
> 2624 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.027$
> $\theta_{\max }=27.5^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-16 \rightarrow 16$
> $l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$S=1.03$
2988 reflections
244 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0437 P)^{2} \\
&+0.2964 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 2$	$1.450(1)$	$\mathrm{O} 3-\mathrm{C} 10$	$1.433(1)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.448(1)$	$\mathrm{O} 3-\mathrm{C} 13$	$1.355(1)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.435(1)$	$\mathrm{O} 4-\mathrm{C} 11$	$1.200(1)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.347(1)$	$\mathrm{O} 5-\mathrm{C} 13$	$1.202(1)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$	$96.44(7)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 1$	$114.07(8)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 11$	$117.61(8)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	$111.61(8)$
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 13$	$114.35(8)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{O} 4$	$123.71(10)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$112.59(8)$	$\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12$	$110.56(9)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 10$	$109.23(8)$	$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12$	$125.72(10)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$100.95(8)$	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{O} 5$	$122.77(10)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$103.03(8)$	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 14$	$111.77(9)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$103.23(8)$	$\mathrm{O} 5-\mathrm{C} 13-\mathrm{C} 14$	$125.46(10)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	$99.16(8)$		

All H atoms were found in a difference Fourier map and refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular
graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). AB and HS thank Professor Dr Y. Akçamur for the elemental analysis.

References

Akkurt, M., Öztürk, S., Baran, A., Seçen, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o1453-o1455.
Allinger, N. L., Yuh, Y. H. \& Lii, J. H. (1989). J. Am. Chem. Soc. 111, 85518566.

Baran, A., Kazaz, C. \& Seçen, H. (2004). Tetrahedron, 60, 861-866.
Baran, A., Kazaz, C., Seçen, H. \& Sütbeyaz, Y. (2003). Tetrahedron, 59, 36433648.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
De Micheli, C., De Amici, M., Grana, E., Zonta, F., Giannella, M. \& Piergentili, A. (1993). Il Farmaco, 48, 1333-1348.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kowarski, C. R. \& Sarel, S. (1973). J. Org. Chem. 38, 117-119.
Newman, M. S. \& Addor, R. W. (1955). J. Am. Chem. Soc. 77, 3789-3793.
Öztürk, S., Akkurt, M., Baran, A.; Seçen, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o1323-o1325.
Prinzbach, H., Bingmann, H., Markert, J., Fischer, G., Knothe, L., Eberbach, W. \& Brokatzky-Geiger, J. (1986). Chem. Ber. 119, 589-615.

Schmidt, R. R. \& Lieberknecht, A. (1978). Angew. Chem. Int. Ed. Engl. 17, 769-770.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yur'ev, Y. K. \& Zefirov, N. S. (1961). Zh. Obshch. Khim. 31, 685-686.

